Lesson 31. Double Integrals Over General Regions

1 Last time: rectangles

- Rectangle $R=[a, b] \times[c, d]$

$$
=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

- $\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$

$$
=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

2 General regions

- How about general regions D ?
- Intuition: if $f(x, y) \geq 0$, double integral still represents volume of solid between D and graph of f
- We focus on two types of regions
- Type I regions: lies between the graphs of two continuous functions of \underline{x}, that is
\square
- Examples:

- If D is a type I region (and f is continuous on D), then
- In the inner integral, x is regarded a constant in $f(x, y)$ and the limits of integration
- Type II regions: lies between the graphs of two continuous functions of y, that is
- Examples:

- If D is a type II region (and f is continuous on D), then
- In the inner integral, y is regarded a constant in $f(x, y)$ and the limits of integration

Example 1. Find $\iint_{D}(x-y) d y d x$, where $D=\{(x, y) \mid 0 \leq x \leq 1,2 x \leq y \leq 2\}$.

Example 2. Find $\iint_{D}(x+2) d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.

Example 3. Evaluate $\iint_{D}(2-2 x-y) d A$, where D is the triangular region with vertices $(0,0),(2,0),(1,1)$.

- If $D=D_{1} \cup D_{2}$, where D_{1} and D_{2} don't overlap except perhaps on their boundaries, then

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

(a) D is neither type I nor type II.

(b) $D=D_{1} \cup D_{2}, D_{1}$ is type I, D_{2} is type II.

Example 4. Write $\iint_{D}(2-2 x-y) d A$ as the sum of 2 type I region iterated integrals, where D is the triangular region with vertices $(0,0),(2,0)$, and $(1,1)$.

Example 5. Sketch the region of integration of $\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{2}+y^{2}\right) d y d x$. Change the order of integration. Evaluate the integral using the order of integration of your choice.

Example 6. Consider the double integral $\iint_{D} f(x, y) d A$ where D is enclosed by $x=0, x=\sqrt{1-y^{2}}$. Set up this double integral as an iterated integral using both orders of integration.

Example 7. Consider the double integral $\int_{0}^{4} \int_{\sqrt{x}}^{2} f(x, y) d y d x$. Sketch the region of integration and change the order of integration.

Example 8. Let D be some region in the $x y$-plane. What does $\iint_{D} 1 d A$ represent? Explain.

